what it looks like when a black hole snacks on a star

Discuss Astrophysics.
Post Reply
User avatar
notFritzArgelander
In Memory
In Memory
Articles: 0
Offline
Posts: 14925
Joined: Fri May 10, 2019 4:13 pm
4
Location: Idaho US
Status:
Offline

TSS Awards Badges

what it looks like when a black hole snacks on a star

#1

Post by notFritzArgelander »


https://phys.org/news/2021-09-black-hol ... -star.html

I'm coming back to this later when I plan to read the paper, or rather its preprint.
Scopes: Refs: Orion ST80, SV 80EDA f7, TS 102ED f11 Newts: AWB 130mm, f5, Z12 f5; Cats: VMC110L, Intes MK66,VMC200L f9.75 EPs: KK Fujiyama Orthoscopics, 2x Vixen NPLs (40-6mm) and BCOs, Baader Mark IV zooms, TV Panoptics, Delos, Plossl 32-8mm. Mixed brand Masuyama/Astroplans Binoculars: Nikon Aculon 10x50, Celestron 15x70, Baader Maxbright. Mounts: Star Seeker IV, Vixen Porta II, Celestron CG5
User avatar
notFritzArgelander
In Memory
In Memory
Articles: 0
Offline
Posts: 14925
Joined: Fri May 10, 2019 4:13 pm
4
Location: Idaho US
Status:
Offline

TSS Awards Badges

Re: what it looks like when a black hole snacks on a star

#2

Post by notFritzArgelander »


The paper is interesting and rules out some exotic forms of dark matter as well!

https://arxiv.org/abs/2104.01498
We simultaneously and successfully fit the multi-epoch X-ray spectra of the tidal disruption event (TDE) 3XMM J215022.4-055108 using a modified version of our relativistic slim disk model that now accounts for angular momentum losses from radiation. We explore the effects of different disk properties and of uncertainties in the spectral hardening factor fc and redshift z on the estimation of the black hole mass M and spin a. Across all choices of theoretical priors, we constrain M to less than 2.2e4 Ms at 1 sigma confidence. Assuming that the TDE host is a star cluster associated with the adjacent, brighter, barred lenticular galaxy at z=0.055, we constrain M and a to be (1.75+0.45-0.05)e4 Ms and 0.8+0.12-0.02, respectively, at 1 sigma confidence. The high, but sub-extremal, spin suggests that, if this intermediate mass black hole (IMBH) has grown significantly since formation, it has acquired its last e-fold in mass in a way incompatible with both the standard and chaotic limits of gas accretion. Ours is the first clear IMBH with a spin measurement. As such, this object represents a novel laboratory for astro-particle physics; its M and a place tight limits on the existence of ultralight bosons, ruling out those with masses 1.0e-15 to 1.0e-16 eV.
Light axion and vector boson masses in ranges above do not exist. Other BHs can rule out different mass ranges.
Scopes: Refs: Orion ST80, SV 80EDA f7, TS 102ED f11 Newts: AWB 130mm, f5, Z12 f5; Cats: VMC110L, Intes MK66,VMC200L f9.75 EPs: KK Fujiyama Orthoscopics, 2x Vixen NPLs (40-6mm) and BCOs, Baader Mark IV zooms, TV Panoptics, Delos, Plossl 32-8mm. Mixed brand Masuyama/Astroplans Binoculars: Nikon Aculon 10x50, Celestron 15x70, Baader Maxbright. Mounts: Star Seeker IV, Vixen Porta II, Celestron CG5
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Return to “Astrophysics”