Gaia repurposed as a gravitational wave detector

Discuss Astrophysics.
Post Reply
User avatar
notFritzArgelander
In Memory
In Memory
Articles: 0
Offline
Posts: 14925
Joined: Fri May 10, 2019 4:13 pm
4
Location: Idaho US
Status:
Offline

TSS Awards Badges

Gaia repurposed as a gravitational wave detector

#1

Post by notFritzArgelander »


Scopes: Refs: Orion ST80, SV 80EDA f7, TS 102ED f11 Newts: AWB 130mm, f5, Z12 f5; Cats: VMC110L, Intes MK66,VMC200L f9.75 EPs: KK Fujiyama Orthoscopics, 2x Vixen NPLs (40-6mm) and BCOs, Baader Mark IV zooms, TV Panoptics, Delos, Plossl 32-8mm. Mixed brand Masuyama/Astroplans Binoculars: Nikon Aculon 10x50, Celestron 15x70, Baader Maxbright. Mounts: Star Seeker IV, Vixen Porta II, Celestron CG5
User avatar
ThinkerX United States of America
Orion Spur Ambassador
Articles: 0
Offline
Posts: 595
Joined: Sat Nov 09, 2019 11:19 pm
4
Location: Alaska
Status:
Offline

Re: Gaia repurposed as a gravitational wave detector

#2

Post by ThinkerX »


might be just me, but that article seems to be reaching a little...
User avatar
notFritzArgelander
In Memory
In Memory
Articles: 0
Offline
Posts: 14925
Joined: Fri May 10, 2019 4:13 pm
4
Location: Idaho US
Status:
Offline

TSS Awards Badges

Re: Gaia repurposed as a gravitational wave detector

#3

Post by notFritzArgelander »


ThinkerX wrote: Sat May 15, 2021 2:35 am might be just me, but that article seems to be reaching a little...
It's probably not just you, but I don't think that the article is "reaching" at all. The paper seems thorough and well argued.

https://arxiv.org/abs/2105.04039
Low frequency gravitational waves (GWs) are keys to understanding cosmological inflation and super massive blackhole (SMBH) formation via blackhole mergers, while it is difficult to identify the low frequency GWs with ground-based GW experiments such as the advanced LIGO (aLIGO) and VIRGO due to the seismic noise. Although quasi-stellar object (QSO) proper motions produced by the low frequency GWs are measured by pioneering studies of very long baseline interferometry (VLBI) observations with good positional accuracy, the low frequency GWs are not strongly constrained by the small statistics with 711 QSOs (Darling et al. 2018). Here we present the proper motion field map of 400,894 QSOs of the Sloan Digital Sky Survey (SDSS) with optical {\it Gaia} EDR3 proper motion measurements whose positional accuracy is <0.4 milli-arcsec comparable with the one of the radio VLBI observations. We obtain the best-fit spherical harmonics with the typical field strength of (0.1)μarcsec, and place a tight constraint on the energy density of GWs, Ωgw=(0.964±3.804)×10−4 (95 \% confidence level), that is significantly stronger than the one of the previous VLBI study by two orders of magnitude at the low frequency regime of f<10−9[Hz]≃(30yr)−1 unexplored by the pulsar timing technique. Our upper limit rules out the existence of SMBH binary systems at the distance r<400 kpc from the Earth where the Milky Way center and local group galaxies are included. Demonstrating the limit given by our optical QSO study, we claim that astrometric satellite data including the forthcoming {\it Gaia} DR5 data with small systematic errors are powerful to constrain low frequency GWs.
Scopes: Refs: Orion ST80, SV 80EDA f7, TS 102ED f11 Newts: AWB 130mm, f5, Z12 f5; Cats: VMC110L, Intes MK66,VMC200L f9.75 EPs: KK Fujiyama Orthoscopics, 2x Vixen NPLs (40-6mm) and BCOs, Baader Mark IV zooms, TV Panoptics, Delos, Plossl 32-8mm. Mixed brand Masuyama/Astroplans Binoculars: Nikon Aculon 10x50, Celestron 15x70, Baader Maxbright. Mounts: Star Seeker IV, Vixen Porta II, Celestron CG5
User avatar
turboscrew
Inter-Galactic Ambassador
Articles: 0
Offline
Posts: 3233
Joined: Sat Jun 20, 2020 9:22 am
3
Location: Nokia, Finland
Status:
Offline

TSS Awards Badges

Re: Gaia repurposed as a gravitational wave detector

#4

Post by turboscrew »


What's the idea here? Is it a huge amount of data from huge number of targets?
And if Gaia doesn't find wobble, it's confirmed that the wobbling is below Gaia's limit of detection giving an upper limit for the wobbling (and thus for the gravitational waves)?
- Juha

Senior Embedded SW Designer
Telescope: OrionOptics XV12, Mount: CEM120, Tri-pier 360 and alternative dobson mount.
Grab 'n go: Omegon AC 102/660 on AZ-3 mount
Eyepieces: 26 mm Omegon SWAN 70°, 15 mm TV Plössl, 12.5 mm Baader Morpheus, 10 mm TV Delos, 6 mm Baader Classic Ortho, 5 mm TV DeLite, 4 mm and 3 mm TV Radians
Cameras: ZWO ASI 294MM Pro, Omegon veLOX 178C
OAG: TS-Optics TSOAG09, ZWO EFW 7 x 36 mm, ZWO filter sets: LRGB and Ha/OIII/SII
Explore Scientific HR 2" coma corrector, Meade x3 1.25" Barlow, TV PowerMate 4x 2"
Some filters (#80A, ND-96, ND-09, Astronomik UHC)
Laptop: Acer Enduro Urban N3 semi-rugged, Windows 11
LAT 61° 28' 10.9" N, Bortle 5

I don't suffer from insanity. I'm enjoying every minute of it.

Image
User avatar
notFritzArgelander
In Memory
In Memory
Articles: 0
Offline
Posts: 14925
Joined: Fri May 10, 2019 4:13 pm
4
Location: Idaho US
Status:
Offline

TSS Awards Badges

Re: Gaia repurposed as a gravitational wave detector

#5

Post by notFritzArgelander »


turboscrew wrote: Sat May 15, 2021 8:15 pm What's the idea here? Is it a huge amount of data from huge number of targets?
And if Gaia doesn't find wobble, it's confirmed that the wobbling is below Gaia's limit of detection giving an upper limit for the wobbling (and thus for the gravitational waves)?
Exactly so. And the upper limit is more severe than radio astronomy can currently provide. It’ll be most interesting to see what happens when the upper limit gets improved to a measurement level. That just requires more time.
Scopes: Refs: Orion ST80, SV 80EDA f7, TS 102ED f11 Newts: AWB 130mm, f5, Z12 f5; Cats: VMC110L, Intes MK66,VMC200L f9.75 EPs: KK Fujiyama Orthoscopics, 2x Vixen NPLs (40-6mm) and BCOs, Baader Mark IV zooms, TV Panoptics, Delos, Plossl 32-8mm. Mixed brand Masuyama/Astroplans Binoculars: Nikon Aculon 10x50, Celestron 15x70, Baader Maxbright. Mounts: Star Seeker IV, Vixen Porta II, Celestron CG5
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Return to “Astrophysics”